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Chains of temporal dark solitons in dispersion-managed fiber
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Attractive interaction of dark dispersion-managed (DM) solitons is observed numerically. For certain initial
separations chains of bound dark DM solitons are found. The chains can have various lengths (up to 12 solitons
are shown), and the nearest-neighbor separations can take several values—all the same or mixed.
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I. SOLITONS IN FIBER

Bright solitons in optical fiber are pulses of light with a
hyperbolic-secant envelope shape (sech? power profile) and a
specific relation between peak power and duration. Since the
suggestion [1] and experimental demonstration [2], un-
counted studies have given us a fairly complete understand-
ing; today solitons are entering deployment in commercial
telecommunications systems. The mathematical background
is that bright solitons are stable solutions of the underlying
wave equation, the nonlinear Schrodinger equation (NLSE)
[3.4]
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where A(z,T) is the pulse envelope, z is the coordinate in the
propagation direction, 7 is time in the comoving frame, and
B, and vy are the coefficients for dispersion and nonlinearity,
respectively. Stability of the solution implies self-correcting
effects after perturbation; hence the appeal of solitons as the
natural “bits” for optical telecommunication.

To better approximate realistic conditions, additional
terms are often added to the NLSE to account for higher
order dispersion, Raman effect, two-photon absorption, or
other effects. It has been shown that solitons remain stable in
the presence of Hamiltonian deformations, but decay over
finite distances when there are non-Hamiltonian perturba-
tions [5]. In the real world, of course, all distances are finite,
and telecom fibers are unlikely to be longer than the half
perimeter of this planet. We will call mathematically unstable
solutions quasistable when the decay can be scaled beyond
any practically relevant distance. Quasistable solutions are
still viable for applications, even though the self-healing
properties are compromised. We note in passing that numeri-
cal studies can, at best, prove quasistability.

Even in its most basic form the NLSE allows a variety of
solutions other than the bright soliton. Not counting the
trivial and the cw solutions [4], arguably the most relevant is
the dark soliton. Actually there is a whole family of dark
solitons with varying grades of darkness (gray solitons), but
it has become customary to designate as “dark soliton” what
more precisely would be called the “black soliton” [4]. We
will not discuss shades of gray other than black. Dark soli-
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tons are stable solutions in the regime of normal dispersion.
They have a hyperbolic-tangent envelope shape (tanh? or in-
verted sech’ power profile) and sit on an infinitely wide
bright background. While the first experimental demonstra-
tions [6,7] followed soon after that of the bright soliton, the
number of experimental studies devoted to the dark soliton
case [6-9] is quite limited. One reason is that dark solitons
are more difficult to generate.

Some authors have argued that dark solitons are more
stable in the presence of perturbations due to their phase
jump which, being a topological singularity, cannot be lifted
by smooth deformation. Also, they are less susceptible to
perturbations from loss [10,11], the Gordon-Haus effect
[12,13], or interactions [14] than their bright counterparts.
On the other hand it has been shown that the Raman effect,
which for bright solitons nondestructively shifts the fre-
quency [15], shifts dark solitons in more complicated ways
and ultimately destroys them [16,17]. In any event, the broad
(in principle, infinitely broad) background required for dark
solitons creates both an increased demand for power and an
enhanced risk of Brillouin scattering. Therefore, practical
systems so far have used bright solitons exclusively. None-
theless, dark solitons remain an amazing subject from a fun-
damental point of view. It is also possible that in dispersion-
managed fiber (see below) their inherent drawbacks need to
be revisited: conclusions based on the conventional fiber
case might be premature.

For our present purposes we also need to mention solu-
tions of the NLSE that take the form of Jacobi elliptical
functions. They are summarily called “cnoidal waves” and
describe infinite trains of bright (cn, dn) or dark (sn) pulses.
The sn solution is stable in normal dispersion, and can be
stable or quasistable in the presence of the Raman effect
[18]. Very recently even solutions of a dark soliton on top of
a cnoidal wave were found [19].

In this paper we describe coupled states of dark solitons.
We do not consider coupling between solitons of different
optical frequencies or of different polarization states, but
deal with same-frequency, same-polarization solitons exclu-
sively.

II. DISPERSION MANAGEMENT

As it turns out, today very often fibers are deployed which
do not have a constant dispersion value along its entire
stretch (called homogeneous fiber henceforth), but rather al-
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ternates between positive and negative dispersion [in Eq. (1),
B>— B(z)]. Such dispersion-managed (DM) fibers have sev-
eral advantages for optical data transmission, not the least
among which is the nearly complete suppression of four
wave mixing which otherwise would generate severe channel
cross talk in wavelength-division multiplexed systems.

It has been established in Refs. [20-24] that bright soli-
tons exist in such fibers, but with slightly modified shape and
interaction behavior in comparison to their counterparts in
homogeneous fibers. They are thus referred to as DM soli-
tons. A corresponding result was obtained for dark solitons
[25] and confirmed semianalytically in [26], and it was spe-
cifically pointed out that dark DM solitons have characteris-
tic undulations in their wings that are much more pro-
nounced than for bright DM solitons. These undulations are
important for our present purpose.

Dispersion management is typically done by assigning al-
ternating dispersion values in a strictly periodical fashion. It
has been established, however, that small deviations from
such exact periodicity, while unavoidable when several seg-
ments of fiber are concatenated in practice, do not upset the
bright DM soliton format [27] in the sense that they remain
quasistable.

Several facts are quite different in DM fibers, as com-
pared to homogenous fibers: In DM fiber, all solitons are
periodically perturbed, and this fact changes their stability
properties considerably. Both bright and dark DM solitons
are only quasistable. Cnoidal waves of the cn and dn type in
homogenous fibers are unstable over wide ranges of param-
eter space [29]. However, in DM their stability properties are
different: cn waves experience reduced instability and may
be called quasistable, while the stability of sn waves is de-
graded from stable to quasistable [30]. Moreover, entirely
new classes of solitonlike solutions exist in DM fibers. Re-
cently soliton molecules, consisting of bound states of bright
and dark solitons, were discovered numerically, then demon-
strated experimentally [28]. Such a compound state would be
highly unstable in homogenous fibers.

III. BOUND DARK SOLITONS

In this paper we introduce a family of quasistable solu-
tions. We present a numerical study of the interaction be-
tween temporal dark DM solitons. We report that dark soli-
tons in DM fiber lines exhibit not only repulsive but also
attractive interaction—this is quite different from the situa-
tion in homogeneous fiber. Then we show the existence of
stable bound states of dark DM solitons. Finally, we demon-
strate that these bound states can take the form of chains of
several dark solitons.

It has been known [31] that dark (black) fiber solitons
always repel; [32] extend this to both black and gray soli-
tons. For bright DM solitons bound states have been dis-
cussed before. Paré and Bélanger theoretically pointed out
the possibility of soliton pairs [33], and Maruta found com-
pounds of more than two solitons [34]. An experimental ob-
servation of a DM soliton compound was reported in Ref.
[28]. We will comment on the relation of our finding to a
theoretical study of dispersion-managed cnoidal waves [30]
below.
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IV. PROCEDURE

To compute the propagation of dark DM solitons we nu-
merically solve the NLSE by applying the well-known split-
step Fourier method [4]. We let the dispersion coefficient 3,
alternate between B,=p0, and B,=/_ for lengths L, and L_,
respectively. The important characteristics of a dispersion-
managed fiber are the dispersion map period Ly,,,=L.+L_,
the path average dispersion

_ B.L,+B.L.
p- Lt bL

map

and the map strength

|:8+ - BZ|L+ + |B— - B2|L—
72 .

Here 7 is the full width at half minimum (FWHM). For con-
sistency, we will henceforth refer all dark pulse widths to the
FWHM of a single dark soliton after initial transients have
died down, which we call 7,,. We keep the nonlinearity pa-
rameter 7y constant, and we do not include higher order ef-
fects, gain, or polarization effects.

In simulations of dark solitons one needs to replace the
infinite cw background with a finite background pulse. This
background pulse has to be much wider than the dark pulse,
indeed so broad that no artifacts from its wings become no-
ticeable. We use here an unchirped super-Gaussian (with ex-
ponent 6) background pulse 200 times wider than the dark
soliton in order to assure an almost constant background
level, in a computational window another factor of four
wider than that. We convinced ourselves by varying the
width of the background that for these parameters, artifacts
caused by the finite width of the background pulse are
avoided.

We simulated transmission lines consisting of 100---300
map periods. For dark pulse widths of about 1 ps width, this
corresponds to a total span length of 20---60 km. The length
is better expressed in units of characteristic dispersion

lengths Lp; we use the definition Lp=(0.5677,;)?/|B,|. Then
our simulations span 31---93 L. The length can also be ex-
pressed in units of nonlinear lengths, defined as Ly
=1/(yP,) with P, the power of the background; then our
simulations cover the range of 77---231 Ly;.

In real-world units, to generate a single dark soliton we
launch a tanh-shaped envelope pulse with an initial FWHM
of the dip in the power profile of 7=1 ps and let it propagate

in a path-average dispersion of B,=1 ps?/km. The map
strength of the fiber line was S=1.8. Over the first =10 dis-
persion lengths or so this initial pulse develops into a dark
DM soliton with a FWHM of 7,,,=1.43 ps.

V. DARK SOLITON PAIRS

We turn to the mutual interaction in a pair of dark soli-
tons. To this end we use the product of two position-shifted
dark pulses as described above as a launch condition. It
should be clear that this shape is only a rough approximation
to the dark soliton pair shape. In Fig. 1 the separation of the
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FIG. 1. Interaction of two dark DM solitons: separation AT/ 7y,
as a function of propagation distance z/Lp. The separations evolve
towards a discrete set of equilibrium values (arrows).

zeroes is plotted as a function of their position in the trans-
mission line. Each line describes the evolution of the sepa-
ration between dark DM solitons along the fiber for one par-
ticular initial separation, ranging from 0.9 7, to 9.8 7.
Remarkably, starting from this quasicontinuum of initial
separations the curves tend to a set of five fixed final sepa-
rations which are highlighted by arrows in Fig. 1. These
fixed normalized separations AT/7, constitute a set of
“magic numbers” which we will refer to below repeatedly.
Bound pairs of dark solitons exist at separations correspond-
ing to one of the magic numbers.

On closer inspection one notes that individual traces ap-
proach these equilibrium positions in an oscillatory fashion:
this implies that there is not only repulsion but also attrac-
tion, and some kind of binding energy so that certain sepa-
rations are stabilized. The oscillation period, being a rough
indicator of the strength of the binding force, becomes longer
for growing initial separation. This shows that the binding
force falls with distance; at separations more than 10 7 it
has practically vanished.

The bound dark soliton pair undergoes some breathing
over a dispersion map period L, The separation of the
centers is modulated only slightly in the case of the narrow-
est separation AT/ 1,,;=1.3, and almost unnoticeably for the
larger separations. Figure 2 presents the case of the third
magic number 5.0. In the following we will show propaga-
tions in a stroboscopic manner, i.e., only at the half-segment
points. There the width of the minima in the bound state is
slightly different from 7;: it is 9% narrower for the smallest
magic number, 5% wider for the second, and for the others
<1% wider.

We turn to an interpretation of the origin of the repulsive
and attractive behavior by taking a closer look at the pulse
shape of the dark DM solitons. As pointed out in Ref. [25],
the wings of dark DM solitons carry undulations; the undu-
lation amplitude increases with growing map strength. Fig-
ure 3 shows the shape of a dark DM soliton pair and its
decomposition into two individual dark DM solitons with
their undulations. We observe that stable separations corre-
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normalized power

FIG. 2. Propagation of a pair of dark solitons at separation
AT/ 74,=5.0 over one dispersion map period. The dispersion is 3,
=B, for 0=<z<0.25 and 0.75<z=<1, and B,=B_ for 0.25<z
<0.75. The undulations in the wings move somewhat, but the po-
sition of the centers is very nearly constant.

late with certain relative positions of the undulations: The
relative positions move somewhat across one dispersion map
period, but at the position where they are shown (the “chirp-
free” point at the center of L,) the undulations of the two
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FIG. 3. Dark soliton pairs and their constituents. Separation
AT/ 7y equals (a) 2.9, (b) 7.1. Solid black line: dark soliton pair.
Dashed gray line: two single position-shifted dark DM solitons.

066616-3



M. STRATMANN AND F. MITSCHKE

-
k=l

o
Ll

normalized power

o
o

time T/t
sol

FIG. 4. Chain of six dark DM solitons. A suitable initial condi-
tion was propagated over 63 dispersion lengths to yield the trace
shown.

dark solitons overlap almost in antiphase; throughout one
dispersion map they remain near this condition. The same is
found for all magic numbers. While details of the mechanism
remain to be understood, it is obvious that the undulations in
the wings of the dark DM solitons are responsible for the
interaction forces between the solitons.

VI. DARK SOLITON CHAINS

To generate multiple dark solitons we use the product of
several position-shifted hyperbolic-tangent pulses as de-
scribed above as a launching condition—again, a rough ap-
proximation to the structure that finally emerges. This struc-
ture has a power profile like a comb of dark pulses. For Fig.
4 we chose six dark pulses and the second magic number 2.9
as their mutual separation, and had it propagate over 63 dis-
persion lengths, certainly a more than sufficient distance for
transients to die out. It turns out that the dark pulses maintain
their position with respect to each other. In other words, the
dark soliton comb propagates quasistably. To emphasize that
the solitons in the comb lock in at certain separations, we
speak of chains. We have obtained chains consisting of up to
twelve dark DM solitons so far, and emphasize that a limi-
tation of the chain length is not apparent yet: we were limited
so far by the available computational power.

In Fig. 5 we show the propagation of a 12-soliton chain
over a very long distance. Here the second magic number 2.9
was chosen for the mutual separation. Apparently this chain
is remarkably stable. We also find quasistable propagation
over the distance considered for the other magic numbers
with the exception of the smallest 1.3. In that case the chain
breaks apart after only part of the propagation distance
shown. Our interpretation is that at this closest separation of
a pair, the separation is not quite constant in the course of
one dispersion period but oscillates around it by a few per-
cent. As the chain gets longer, one soliton pushes the next in
the row, and the outermost solitons must undergo a corre-
spondingly larger oscillation around their average position.
Eventually the perturbation becomes so large that it compro-
mises stability. Quite generally we find that positional per-
turbations of more than several percent of the separation are
too strong, so that the chain may break into fragments: either
shorter chains or individual dark pulses.

Since our launch condition is only approximating the
shape of the chain, some radiation must be shed in the tran-
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FIG. 5. Stable propagation of a chain of 12 dark solitons. The
separation was chosen as 2.9 (compare Fig. 1). Propagation (from
bottom to top trace) is shown over 300 dispersion map periods or
93Lp as defined in the text. Measurement in high-resolution en-
largements reveal that radiation moves out at a speed of 1.437,,,/Lp
outside, 1.117,,/Lp inside the chain.

sition phase. This is easily visible in Fig. 5 as small waves
radiating out on either side with fixed speed. It is also plainly
visible that initially much more is radiated than later on. An
interesting observation is that the speed at which the radia-
tion moves out is different inside and outside the chain.
High-resolution enlargements of Fig. 5 allow direct reading
of the angle at which maxima move out (i.e., the speed), both
outside and also inside the dark soliton chain. We find that
the speed is 1.117,,/Lp inside, as compared to 1.437,/Lp
outside. (Note that the speed here has unusual dimension and
units: radiation moves out on the time axis as the structure
propagates down the fiber; hence, speed has dimensions of
time per length.) If one is willing to interpret the soliton
chain as a kind of one-dimensional soliton crystal [35], this
indicates that the crystal has a refractive index different from
that of the outside. This interpretation is in accord with our
observation that the speed depends on the separation. At
larger separation (lower density) the speed inside is closer to
the speed outside. For example, for a separation of 5.0 we
find a value of 1.337,/Lp. In other words: in the dense
crystal the speed is 78%, in the less dense crystal 93% of the
outside value.

There is no requirement that all nearest-neighbor dis-
tances in the chain are equal. We can freely select separations
from the list of magic numbers given in Fig. 1. Fig. 6 shows
an example of a chain of eight dark solitons in which three
have a separation of 2.9, the other of 5.0. This compound
propagates quasistably, too. Again, the different speed of
relative motion of dispersive waves take the different values
described above in the two zones and on the outside. We
have convinced ourselves that also randomly chosen selec-
tions of different magic number nearest-neighbor separations
yield quasistable chains.

VII. DISCUSSION AND CONCLUSION

We have demonstrated an attractive interaction between
dark DM solitons. This attraction is mediated by undulations
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FIG. 6. Chain of dark solitons with unequal separations: In con-
trast to Fig. 5 the separation is 5.0 in the left half, 2.9 in the right
half. Radiation moves out at a speed of 1.437,/L outside as be-
fore, 1.117,/Lp inside the denser portion and 1.337,,/Lp inside
the less dense portion of the chain.

in their wings. In combination with the previously known
repulsive interaction an equilibrium of forces can be estab-
lished which gives rise to bound states of dark solitons. Sev-
eral quasistable separations are possible, but the degree of
stability is reduced with increasing separation. The bound
states are in no way restricted to pairs of solitons: chains of
up to twelve stably bound dark solitons have been shown,
and even longer chains may be possible.

Attraction between dark solitons was considered impos-
sible in fiber optics, but in different contexts it has been
described before. In Ref. [36] the repulsive interaction of
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spatial vector solitons was compensated by bright light in
between; this compensating action was likened to gluonic
interaction. In Ref. [37] it was shown that nonlocal interac-
tion can lift the repulsive interaction. We demonstrate attrac-
tion between same-frequency, same-polarization fiber-optic
dark solitons in dispersion-managed fiber.

In the simplest case, i.e. when the nearest-neighbor dis-
tance is the same everywhere throughout the chain, all pos-
sible chains form a two-parameter family: the number of
participating solitons can vary from one to at least 12, and
possibly many more, and the nearest-neighbor distance can
take one out of five (or possibly more) discrete values (the
magic numbers). It stands to reason that in the limiting case
of infinitely many participating solitons and for one particu-
lar distance, one approaches the limiting case of the snoidal
wave described in [30]. Further research will make this con-
jecture more specific. Our result is much more general,
though, because it presents the entire transition from single-
soliton to multisoliton objects with different separations. Be-
yond that, one can even have chains with nonuniform spac-
ings. The resulting enormous number of different chain
arrangements, reminiscent of bar codes, may constitute yet
another way to encode information.
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